skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su, Kaile"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we consider the task of discovering the common objects in images. Initially, object candidates are generated in each image and an undirected weighted graph is constructed over all the candidates. Each candidate serves as a node in the graph while the weight of the edge describes the similarity between the corresponding pair of candidates. The problem is then expressed as a search for the Maximum Weight Clique (MWC) in this graph. The MWC corresponds to a set of object candidates sharing maximal mutual similarity, and each node in the MWC represents a discovered common object across the images. Since the problem of finding the MWC is NP-hard, most research of the MWC problem focuses on developing various heuristics for finding good cliques within a reasonable time limit. We utilize a recently very popular class of heuristics called local search methods. They search for the MWC directly in the discrete domain of the solution space. The proposed approach is evaluated on the PASCAL VOC image dataset and the YouTube-Objects video dataset, and it demonstrates superior performance over recent state-of-the-art approaches. 
    more » « less